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Var ia t ional  formula t ion  is given of the nonsta t ionary  heat  conduction problem for two 
bodies ;  i ts  numer i ca l  solution by the f in i t e -e lement  method (FEM) r educes  to the solving 
of s imul taneous  l inea r  a lgebra ic  equations.  

1. Formula t ion  of the P r o b l e m .  A s y s t e m  of two bodies is given which a r e  in contact  with one an-  
o ther ,  each occupying the space  V i and V 2 r e spec t ive ly  with the cor responding  boundar ies  B! and B 2. Le t  
S be the common  pa r t  of the boundary B 1 + B 2 (the su r f ace  of the contact) w h e r e  one has  a boundary condition 
of the th i rd  kind, I" i and F 2 being the f ree  pa r t s  of the boundary for  which the heat  flux is zero .  

One then has  the following s y s t e m  of equations: 

cff~O~ = ~0~,~ ~- ~,~wl (t > O, x ~ V~), (la) 

c~?,O., = X20~, u (t > 0 ,  x E V.,.) (lb) 

with the initial  conditions 

o,  tx, o) = o~ (x), o3 (x, o) = o g (x) 

and the boundary conditions 

~lO~,~n} ~) = - e(0~ - - 0 0  on S, 

X..,O.,,~n7 ~ = - -  ~ (0~ - -0~ )  on S, 

z~O~,~nIl) = 0  on r v 

X~O.,,in7 ) = 0 on r~, 

(2) 

(3a)  

(Zb) 

(4a)  

(4b) 

(5) 

where  B i = I~l + S, B 2 = F 2 + S. In the physical  in te rpre ta t ion  the subscr ip t ,  o r  s u p e r s c r i p t ,  "1" c o r r e -  
sponds to the me ta l ,  and the subsc r ip t  "2" to the r o l l e r s .  

2. Var ia t ional  Formula t ion .  Following [5] if the concept  of convolution of two continuous functions 
f(x, t) and g(x, t) defined on V x [0, oo ] is introduced by m e a n s  of 

t 

If*gl(x, t) = .~ f(x, t - - t ) g ( x ,  t )d t ,  (x, x)EV• oo), 
0 

where  V x [0, *~) denotes  the se t  which is the d i r ec t  product  of the region V and of the t ime  in te rva l  [0, oo) 
it can be seen  that  Eqs.  (1) with the initial condition (2) a r e  equivalent  to the following re la t ions :  

C1"~101 = )~l*Ol, li --~ C1•1010 + ~ I * W l  Oil V l X [ O ,  oo) ,  

^ ~ _2_ 0~9 c~17~00, = ~*v.,,u ~ c2~?o. 2 on V~• oo). 

Indeed,  by integrat ing,  say ,  both s ides  of Eq. (la) ove r  [0, t] and using (5) one obtains 

t t 

0 0 

(6a) 

(6b) . 
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o r  

c?hO ~ (x, t) - -  cl~,aO 1 (x, O) = Zl*O~,. -k Vl*Wr 

The  boundary  condi t ions  (3) and (4) can  a l so  be t r a n s f o r m e d  in a s i m i l a r  m a n n e r  r e s u l t i n g  in equ i -  
va len t  r e l a t i ons .  

~t,01,~n~ l~ = a .  (01 03) on S •  [0, ~) ,  (7a) 

~,~m = a*(O~ 01) on S •  oo), ( 7 b )  

X~*0~,in~' = 0 on r~• ~ ) ,  (Sa) 

~, ,t~ nr -~> = 0 on r ,  • [0, ~r (8b)" 

To obtain  the so lu t ion  o f  the va r i a t i ona l  p r o b l e m  the concep t  of  a feas ib le  s ta te  R = ~0 l ,  02} is i n t r o -  
duced  which  r e p r e s e n t s  the to ta l i ty  of  two cont inuous funct ions  01(x, t) and 02(x, t) def ined on V i • [0, ~ )  
and V 2 x [0, ~ ) .  T h e n  the solut ion of  the p r o b l e m  (1)-(4) can  be d e t e r m i n e d  a s  a feas ib le  s ta te  R = ~0 l, 02} 
such  that  it s a t i s f i e s  Eq. (1), the init ial  condi t ions  (2) and the boundary  condi t ions  (3) and (4). 

F u r t h e r ,  le t  t he re  be defined on the se t  of  feas ib ie  s t a t e s  K for  any tE [0, oo) the funct ional  

'S 
a)t {R} = -~ -  [ct7101,01 + X~,0~,~,0~,~ - -  2Q~10~*01 271,~1.011 (x, OdVl 

V, 

--- S B 1 [c.,?.,0.,*0~ ~ ~*0~,~*0~,i 2q7~0~*0 d (x, t) dV~ 

V~ 

1 [~* (Oa - -  0.,).8~1 (x, t) dS ~- -~ -  [a* (03 - -  00. *0.,] (x, t) dS. (9)  
2 - 

S S 

Var i a t i ona l  fo rmu la t i on  is now given which is a gene ra l i z a t i on  of  the p r i n c i p l e s  o r i g ina l l y  fo rmu la t ed  
for  p r o b l e m s  of  l i n e a r  e t a s t o d y n a m i c s  [2, 3]. 

THEOREM.  F o r  a feas ib le  s ta te  fl = {01, 0~}, R ~ K to be a solut ion of  the p r o b l e m  (1)-(4) it is  
n e c e s s a r y  and suf f ic ien t  tha t  on K the condi t ion  be sa t i s f i ed  

6@~{R} = 0 (0.~ t <  r162 (10) 

P r o o f .  
the convolut ion  [5] and the G a u s s - O s t r o g r a d s k i i  t h e o r e m  one obta ins  

6~t {R} t" = [(L1?01---" :kl*Os, u -  cl?lOl - -  .6.~1)*t~01] (x, t) dV 1 
0 

'1 

; ~ I --  [(c~?.,O. z - -  ?.~*O.z, u - -  c.,~02).60~1 (x, t) dV.. -}- [~.t*:Oj,d~}) .60~1 (x, t) dr  l 

V.~ i't 

.1- ~ {[)~I$OI.,~./Z~ 1 } - .  CZ*(O 1 0.,)] $ ~ 0 1 } .  (X, t ) . d S - -  f [~,s*O~,d$~2)*60.,]_ (x, I) clF 2 -c- i' {{~,~*0.2jg~2)-~c cz*(O~- 01)] $~02} (X, t ) d S .  
,3 t3 
5 I~ S 

I t  is  obvious  that  the va r i a t iona l  fo rmu la t i on  is n e c e s s a r y  s ince  by a s s u m i n g  R = {8 i , 02} to be the 
so lu t ion  of  (1)-(4) t oge the r  with (6)-(8) it can  eas i ly  be seen  that  (10) fol lows f r o m  (11). 

To p rove  the suf f ic iency  two l e m m a s  a r e  fo rmu la t ed  [3] s i m i l a r  to the fundamenta l  l e m m a  of the 

c a l c u l u s  of  v a r i a t i o n s .  

LEMMA 1. Le t  f be a cont inuous funct ion V x [0, ~)  and let  us a s s u m e  that  

.i[r*gl(x, t l d V = O  ( O . ~ t ~ t  
v 

for  any funct ion g which van i shes  on B x [0, r (B is the boundary  of the reg ion  V). 

LEMMA 2. 

Having  d e t e r m i n e d  the v a r i a t i o n  o f  the funct ional  (9) by taking into accoun t  the p r o p e r t i e s  of  

(11) 

T h e n f =  0 o n V  • [0, 

L e t  f be a p i e c e wi se - c on t i nuous  funct ion on B i • [0, r and le t  us  a s s u m e  that  

Bl 
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for any function g which vanishes on B 2 x [0, oo) (B 1 and B 2 are  closed nonoverlapping subsets of the bound- 
a r y B ) .  T h e n f = 0 o n B  I • [0, ~o). 

Let  us assume the opposite, that is, that REK satisfies (10). Then by choosing 5R = {601 , O} such 
that ~ t  vanishes on B t • [0, oo) it follows from (10) and (11) that 

~ t (~ .o ,  : :  ~1.oi,. - ~,~,o?- ~.~).~o~1 (~, t) dvl = o, (12) 

and hence with the aid of Lemma 1 one obtains Eq. (6a). 

T h e n  choosing 5R = {5~ i , 0} such that 58 i vanishes on F i • [0, oo)one obtains from (10), (11), and 
(6a) with the aid of Lemma 2 

i 

~,,*O~,fn~' .  . . ~ - - -  ~ z , ( O ~ - - O ~ )  on S •  oo ) .  , (1.3) 
�9 . . �9 . 

For 5R = {SO l, 0} such that 591 vanishes on S • [0, ~o)it follows from (10), (11), and (6a) that 

;'~t*Oi.in~l~ = 0  on rlX[0, oo). (14) 

Similarly, by choosing 5R = {0, 5e~} one can obtain Eq. (6b)from (10) and (11) as well as the c o r ,  
responding boundary conditions (7b) and (8b). 

Thus R = {81, 0~ which satisfies the condition (10)!is a solution of the problem (1)-(4), 

3. The Finite-Element Method. The progress  which has been made in solving elasticity theory prob-  
lems by using the FEM [1] gives us reason to believe that the method will also prove fruitful for solving 
the heat-conduction problems. 

The main idea of FEM consists in replacing the sought continuous space function by a finite number 
of its values defined at nodes of a grid. To this end the region of the continuum under consideration is sub- 
divided into a number of elements (subregions) which are  joined together on their boundaries in a finite 
number o f  points. The temperature field is approximated for each element by an algebraic polynomial 
which specifies in a unique manner the temperature in the interior  of an element by the temperatures  of 
the  nodes corresponding to it. 

The ae~aa[ form of the approximation of the temperature field inside an element depends on the type 
of the elements used; therefore ,  in applications one usually selects simple geometric patterns such as a 
portion of a straight line for a one-dimensional problem, or a triangle for a planar, a tetrahedron for a 
spatial problem, e tc ,  

The temperature at any point inside the m-th element can generally be expressed in te rms of the 
temperatures  of the nodes corresponding to it by means of the following matr ix  equation: 

% ( x ,  t) --= < b,,,(x) > {O (t)}., (15) 

where ;{O(t)} is the column-vector of node temperatures  for the ent i re  system of finite elements (the dimen- 
sion of the vector is given by the full nun~ber of nodes for the entire discret ized region); <bm(x)~ is the 
row-vector  of the form function (of the spatial approximation) which relates  the current  point coordinate 
inside the elements to the coordinates of the node. 

It should be mentioned that the majority of the components of the vector <bin(x) > vanishes since the 
temperature  within au element is usually determined by the temperature of the adjoining nodes, 

Differentiating (15) with respect  to the space coordinates one obtains the gradient vector  of the tem- 

pera ture ,  

{0,.,., ~x. t)} -= [a., (x)] {0 (t)}. (16) 

where the rectangular matr ix  lain(x)] has been obtained by differentiating the row-vector  <bin(x)>. 

The adopted temperature function should automatically ensure the continuity of the temperature field 
at the nodes and on the'boundaries with adjacent elements. 

For  the boundary elements on the contact surface the temperature field is approximated by means of 
another form function which corresponds now to the surface distribution of temperature.  Thus instead of 

(15) one sets 
% (x, t) = < 4 .  (x) > {o (t)}, (17) 
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where  the components  of the r o w - v e c t o r  < d m ( x ) >  a re  de t e rmined  s i m i l a r l y  a s <  bm(x)>. 

By subst i tu t ing (15)-(17) into the functional  (9) one obtains  
M, 

(1), {% 0,} -- ~_~ lc,v, {ol (t)} T ( bl,, (x) > ' .  ( b,,. (x) > {0, (t)} 

m=l VI m 

+~,t. {01 (t)} T [a.,, (x)V* [at,. (x)l {01 (t)}--2ct'h {0~ (t)} ~ (b,m(x) ) ~. (barn(x) ) 

• ~ - -  2yl.w,.{01 (t)}* ( b,m (x) 2 *] dVv,, ..i- t [=*( < d,~ (x)) {01 (t)} 

Sm 
M) 

- -  ( d_,,,, (x)) {o, (t)}).{o~ (t)}" ( d,., (x)) q dS,. + --~ 1c2v2{0. ., (t)} �9 ( b~.., (x) ? " �9 ~ b,,r~ (x)) {0~ (t)} 

m = l  V2tl I 

q- ~.~,{0~ (t)}' [a~., (x)V * la2. (x)l {02 (t)} --  2c2~,. " {02 (t)}: ( b.,. (x)) �9 

�9 ( b .  (x) > {o2o}l dV,. .  + f [ ~ , (  < d..,, (x) > {o: (t)} 

Sra 

1 
- - - ' 1 0 ~  ff)} ~ ,[K~I*{0~ (t)} - -  {0~ (t)} ~ �9 IC d {0~l - -  {0~ it)} ~ �9 {Q~ (t)} 

2 

1 1o~ (t)}" , [ L ~ l , ( 0  2 (t)} + - 7  {0.,. it)} ~ �9 [C.I {0~ it)} 
2 " 

I {0. if)I" * IK~I*{0~ (t)} - -  {0.,. ff)} ~ �9 lC~110~} - -  + {0~ (t)} ~ [L~I]*{0I (t)} (lS) [ 

(T is the t r anspos i t ion  symbol)  where  M 1 and M 2 show the number  of e l ements  into which the f i r s t  and the 
second body has  been subdivided;  

Mn 

[C,,l = %z~ [C'~'l (19a)  
m=l 

is the m a t r i x  of the hea t  capac i ty  of the n- th  body (n = 1, 2); 

M n 

[K.I = ~ [K~I (19b) 
m=| 

is  the m a t r i x  of the heat conduct iv i ty of the n- th body; 

Mn 

[L~pl = ~.~ [LTpl (19c) 
m ~ l  

is  the m a t r i x  of the hea t  emi s s ion  between the n- th  and the p- th  body (p = 2, 1); 

Mt 

{Qx (t)} = Z {Q? it)} (19d) 

is  the vec to r  of the t h e r m a l  force  of the f i r s t  body. 

The co r re spond ing  s u b m a t r l c e s  for the m - t h  e l emen t  a re  de t e rmined  in the following manne r :  

[K~'I = 

Vain 

.( ~'n [anm (x)] * [anm (x)]dVnm " S = ( dnm (x) 
Vain Snm 

[L."pl = ~ a ( d~,~ ( x ) ) '  ( dp,,, (x) 
Srtrn 

{ ~  (t)} = 

S c~y~ (b. . , (x) > T < b. m (x)) dV,,m, 

' < d,,m (x) ~ dS.m, 

dS. . .  

S Yx*Wl (blra(X) ) dVlrn. T 

V i m  

(20a) 

(20b) 

(20c) 

(20d) 
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The sur face  integral  in (20b) only appears  for  the boundary e lements  adjoining the contact  surface .  
In [4] an explici t  express ion  was given for the re la t ions  (15) and (16) and for the submat r ices  (20) for  a 
p lanar  t r iangular  e lement .  

By taking a var ia t ion  of the functional (18) and applying the theorem a sys tem of two ma t r ix  equations 
is obtained: 

[Ca] {0 t (t)} + [KI]* {0, (t)} = [C,l {0 ~ + [L,,].{O_. (t)} _{Q, (t)}, (21a) 

[C~] {O,. (t)} -F [K,I.{O= (t)} = [C21 {O ~ + {L~d.{O , (t)}, (21b) 

whose solution is the t empera tu re  field for  the ent i re  sys tem of finite e lements  as a function of t. 

To be able to organize  a s t ep -by- s t ep  p rocedure  for  solving Eqs.  (21) in t ime it is assumed that at  
the nodes the change of t empera tu re  on the t ime interval  [tk, tk+l]  is approximated by 

{O (~)} = A 0 -F TA~ (t~ .<. �9 -~.. th~), (22) 

where  A 0 and A! a r e  some constants .  

If one now de te rmines  {0(r)} in t e rms  of the finite points of this interval  one obtains 

{0(~)}= tk+~-T {O(th) ) T--lk {0(t~+,)} (At-t~.l--t~). (23) 
At At 

Taking into account  (23), the convolution in Eqs .  (21) can now be computed. Indeed, by integrat ing 
ove r  It k, tk+ 1 ] one obtains 

, I At{0r (24a) 

[LI,{O(~>} = [L] ( @  At {O(t,,;,)}-- + At {O(t~),) . (24b) 

The t h e r m a l - f o r c e  can be deal t  with a s ln  (20d); however,  if the heating capacity of the sources  is 
given then the vec to r  can eas i ly  be integrated with r e spec t  to t. 

Then  f rom (21) and using (24), and in view of the las t  r e m a r k  one finally obtains the equations for  the 
t empera tu re  field of a sys tem of two bodies at  the instant tk+l :  

( 2 -  ~. -2- . ( A t )  At {0, (t,:}} . {O,} At. (25a) At At [L~,l{O.,~tk_,)}= [C, I - -  -~- [K~] {O,(t,,)} -i- -~-[L,,] -- [c,l + [K,1 ~ (o, (t~+,))- 

lC, I -r - ~  IK, I {O.(t,+0} - -  --2-[t,dle,(t,,+,)} = [C ,1 -  ~ -  [K21 {O~(t,)} -.- ~ . 

N O T A T I O N  

0(x, t) is the 
O,i is the 
e , i i  is the 

is the 
c is the 
T is the 

is the 
w(x, t) is the 
n i is the 
a i s  the 

t empera tu re ;  
par t ia l  der ivat ive  with r e spec t  to spatial  coordinate  x i (I = 1, 2, 3); 
Laplaeian;  
par t ia l  der ivat ive  with r e spec t  to t ime;  
heat capaci ty;  
density; 
heat-conduct ion coeff icient ;  
specif ic  power (per unit mass)  of internal  heat sources  due to plast ic  deformat ion;  
d i rec t ion  of the unit outer  normal  to the boundary;  
hea t - t r an s f e r  coefficient .  

1. 

21 
3. 
4. 
5. 
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