VARIATIONAL METHOD OF CALCULATING A
NONSTATIONARY TEMPERATURE FIELD
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Variational formulation is given of the nonstationary heat conduction problem for two
bodies; its numerical solution by the finite-element method (FEM) reduces to the solving
of simultaneous linear algebraic equations,

1. Formulation of the Problem, A system of two bodies is given which are in contact with one an-
other, each occupying the space V; and V, respectively with the corresponding boundaries By and B,. Let
S be the common part of the boundary By + B, (the surface of the contact) where one has a boundary condmon
of the third kind, I’y and T being the free parts of the boundary for which the heat flux is zero.

One then has the following system of equations:

cﬂ’;él = A+ vy (>0, xeV)), (1a)
, Y0 =A0,; (>0, xeV)) .. (b

with the initial conditions ’
8, (x, 0) =61 (x), 8,(x, 0) =03(x) @)

and the boundary conditions ‘

10, 1 = — (8, —0,) on S, 3a)
A8, n = —a®,—9,) on S, : 8b)
A0,n" =0 on Ty, (4a)
A8, i =0 on T, {4b)

where By =TIy + 8, B, =Ty +S. In the physical interpretation the subscript, or superscript, "1" corre-
sponds to the metal, and the subscript "2" to the rollers.

2. Variational Formulation, Following [5] if the concept of convolution of two continuous functions
f(x, t) and g(x, t) defined on V x [0, »] is introduced by means of

ifegl (x, £) = 5 fx, t—1)g(x, 1,-) dv, (x, V) €VXIO, o0), (5)

where V x [0, «) denotes the set which is the direct product of the region V and of the time interval [0, =)
it can be seen that Egs. (1) with the initial condition (2) are equivalent to the following relations:

ervy®y = A8y iy + ev81 - v,4w; on Vy %[0, o), (6a)
C¥0s = My#0, 4y c27293 on V,x[0, oo). (6b) .

Indeed, by integrating, say, both sides of Eq. (1a) over [0, t] and using (5) one obtains

¢ t
7, S é,‘(x, Ty dv = g A0y, -+ Y@y dt
0 [}
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or
cv0, (%, ) —cy,8,(x, 0) = }»1*91’“- + yrw,.

The boundary conditions (3) and (4) can also be transformed in a similar manner resulting in equi-
valent relations: :

A28, 0 = —ax (8, —0,) on SX[0, o), (Ta)
ho#8y,n” = —ax (8, —6,) on SXI0, ), - (Tb)
A8, " =0 on T, %[0, oo), (8a)
Mg, 1 =0 on T, %[0, co). (8b)

To obtain the solution of the variational problem the concept of a feasible state R = {6;, 6,} is intro-
duced which represents the totality of two continuous functions 9, (x, t) and 6,(x, t) defined on Vi x [0, =)
and V, x [0, «). Then the solution of the problem (1)-(4) can be determined as a feasible state R = {6, 6,}
such that it satisfies Eq. (1), the initial conditions (2) and the boundary conditions (3) and (4),

Further, let there be defined on the set of feasible states K for any t€ [0, =) the functional

l B
@ {R} Ty S fe9,0,%0; 4 A0y ;%6 ; — 2Cﬂ’19?*91"“271*w1*91] (x, H)dV,
Vi ’

- ] .
- —2—5‘ [028,%0, — Ay#0, ;%0, ; — 2027220_5*02] (x, )dV,
Vs

- _‘5 5 or (8, — 8481 (x, 1) dS + _;_ g lak (8, — 6,) 6,1 (x, ) dS. ©)
s s ' .

Variational formulation is now given which is a generalization of the principles originally formulated
for problems of linear elastodynamiés [2, 3].

THEQREM. For a feasible state R = {91, 6,}, REK to be a solution of the problem (1)-(4) it is
necessary and sufficient that on K the condition be satisfied
SR} =0 (0. t<C o). ' (10)
Proof, Having determined the variation of the functional (9) by taking into account the properties of
the convolution [5] and the Gauss ~Ostrogradskii theorem one obtains
0@, {R} = g‘ fle9,0;— A28y 5 — clvleg — y32w,)*80,1 (x, 1) dV,;
i ,
—5 [(cg00, — 7%, 1 — c;9,00) #66,1 (x, ) dV, -+ g [0, n%80,] (x, ) T, a1

Ve ) T, v
7%

+ j {i2,%0, ) — ccx(8, — 8,1#80,} (x, 8)dS - X [hy#0, 1 #80,] (x, ) dT', + 5 ({040, 1 -+ ax(B, —B)1%80,} (x, 1) dS.
N D, '

It is obvious that the variational formulation is necessary since by assuming R = {4y, 8,} to be the
solution of (1)-(4) together with (6)~(8) it can easily be seen that (10) follows from (11).

To prove the sufficiency two lemmas are formulated [3] similar to the fundamental lemma of the
calcutus of variations, ‘
LEMMA 1, Let f be a continuous function V x [0, =) and let us assume that
{F+gl(x, nav =0 (0<t<oo)

. 1
for any function g which vanishes on B x [0, «) (B is the boundary of the region V). Thenf=0onV X [0,

o},

LEMMA 2. Let f be a piecewise-continuous function on By x [0, «) and let us assume that

(Fxgi(x, dB, =0 (0 <t< o).

By
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for any function g which vanishes on B, x [0, =) (By and B, are closed nonoverlapping subsets of the bound-
ary B). Then f=0onB; X [0, «),

Let us assume the opposite, that is, that R €K satisfies (10). Then by choosing R = {66;, 0} such
that 6¢; vanishes on By x [0, ») it follows from (10) and (11) that

‘5'1(017;9'14 By¥0y, 1 — 017,00 ~ 0w, #80,] (x, 1) AV, = 0, (12)
and hence with the aid of Lemma 1 c;ne obtains Eq. (6a).

‘Then choosing 6R = {56, 0} such that 56, vanishes on I'; x [0, =) one obtains from (10) (11) and
{6a) with the aid of LLemma 2

A *91 in“) == - a*(ﬁ —-62) on SXI[0, o). . (13)
For 6R = {66y, 0} such that 69, vanishes on § x [0, ) it follows from (10), (11), and (62) that '
Ay %0 ;0 = -0 on T',%i0, o). : (14)

Similarly, by choosing 6R= {0, 66,} one can obtain Eq. (6b) from (10) and (11) as well as the cor-
responding boundary conditions (7b) and (8b).

Thus R = {g,, 9,} which satisfies the condition (10):is a solution of the problem (1)-(4).

3. The Finite-Element Method. The progress which has been made in solving elasticity theory prob-
lems by using the FEM [1] gives us reason to believe that the method will also prove fruitful for solving
the heat-conduction problems,

The main idea of FEM consists in replacing the sought continuous space function by a f{inite number
of its values defined at nodes of a grid. To this end the region of the continuum under consideration is sub-
divided into a number of elements (subregions) which are joined together on their boundaries in a finite
number of points. The temperature field is approximated for each element by an algebraic polynomial
which specifies in a unique manner the temperature in the interior of an element by the temperatures of
‘the nodes corresponding to it.

The actual form of the approximation of the temperature field inside an element depends on the type
of the elements used; therefore, in applications one usually selects simple geometric patterns such as a
portion of a straight line for a one-dimensional problem, or a triangle for a planar, a tetrahedron for a
spatial problem, etc,

The temperature at any point inside the m-th element can generally be expressed in terms of the
femperatures of the nodes corresponding to it by means of the following matrix equation:

0, (X, ) = {ba(x))> {8(D), | 15)

where ‘{g(t)} is the column-vector of node temperatures for the entire system of finite elements {the dimen~
sion of the vector is given by the full number of nodes for the entire discretized region); (bm(x)> is the
row-vector of the form function (of the spatial approximation) which relates the current pomt coordinate
inside the elements to the coordinates of the node,

It should be mentioned that the majority of the components of the vector ( bm(x)> vanishes since the
temperature within an element is usually determined by the temperature of the adjoining nodes.
Differentiating (15) with respect to the space coordinates one obtains the gradient vector of the tem-
perature, ’ ; :

{0n,: (x, 1)} = [ap xN {81} : (16)

where the rectangular matrix (g, (x)] has been obtained by differentiating the row-vector (bm(x)>.

The adopted temperature function should automatically ensure the continuity of the temperature field
at the nodes and on the boundaries with adjacent elements,

For the boundary elements on the contact surface the temperature field is approximated by means of
another form function which corresponds now to the surface distribution of temperature. Thus instead of
(15) one sets

8, (x, £) = (dp () >{8O)} amn

330



where the components of the row-vector <dm(x) >are determined similarly as< by, (x)>.

By substituting (15)-(17) into the functional (9) one obtains

M,
., 0 =Y ;— [ { f (o3, (8, (O by (X)> "% < by (%)) {6, (1))
V|m

m=1
+h % {0, (D) [ayn (N* [y, ({0, (N} —20,9, {0, (O} {by(X) > T {by(X) >
X{O(l)} — 2y2w,#{0, ()7 ( by (x) > 1V, o+ ([a*( {dym ()5 {0, (1)}

o

Sm

M,
(g () {8, OD*O, OF (dym (93 1S, }} ) % { { j (10, () € by (8037 % (b (X)) {6, (0}
m=l V':m

A 22 {0, (O} [ (1" (2, ()1 {68, (1)} — 26,7, {8, ()" (Do (X) > 7

* { by, (x) > {69} 4V, - f [a*( { dy (%) > £6, ()}
Sm

— {dym (1)) 8, N8, (O} () > 7] dSm}} = %{91 O} +[C1 {8, @)}

0o~

(6, O s{K.J (8, 0} — (8,0} +[C.1H0Y — &, ) +(Q, )
— 1, OF +LsE O} - O, 0F *(CI (0,0

+ ";— (0, () * [K,l#{8, () — {8 () * [C,) {63} — % 0, () * 1L)+{0, (9}

(18)

(T is the transposition symbol) where My and M, show the number of elements into which the first and the

second body has been subdivided;
MII

[C.] = X ICh]
m=1

is the matrix of the heat capacity of the n-th body (n =1, 2);
M

n
K] = Y (KT
m=|
is the matrix of the heat conductivity of the n-th body;

Mn
Lopl = X 1L7)
m=l1
is the matrix of the heat emission between the n-th and the p-th body (p = 2, 1);
N
@0y = 2 (@ oy
1

ni=

is the vector of the thermal force of the first body.

The corresponding submatrices for the m-th element are determined in the following manner:

[alul = S Cp¥n € bnm (x) b <bnm (X) > dV”m,

Vnm
(K2 = § Ay (g OO [ (Vg - | & (i (05 F (i (9 AS
Vam Snm
[LTP] = 5‘ a dnm (’C) > ' < dpm (X) > dsnm’

nm

@)= § v, Copm®) >V,
Vim

(19a)

(19b)

(19¢)

(19d)

(202)

(20b)

(20c)

(20d)
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The surface integral in (20b) only appears for the boundary elements adjoining the contact surface,
In [4] an explicit expression was given for the relations (15) and (16) and for the submatrices (20) for a
planar triangular element, :

By taking a variation of the functional (18) and applying the theorem a system of two matrix equations
is obtained:

IGO0} = 1K1 {8, (00} = 1C,1 (65} = [Ly,1{8, (0} -+(Q, ), (21a)
[C1{8, (0} - [K,1#{8, ()} = [C,] {82} - (L,,]+{8, (1), (21b)
whose solution is the temperature field for the entire system of finite elements as a function of t.

To be able to organize a step-by-step procedure for solving Egs. (21) in time it is assumed that at
the nodes the change of temperature on the time interval {tx, t .,] is approximated by

B} =A4,--tA, (t, <T<E,). (22)
where A, and A; are some constants.
If one now determines {¢(r)} in terms of the finite points of this interval one obtains
O} = 'h_dAT’l (68t} — Ot ) (AL =1, —12). (23)

Taking into account (23), the convolution in Eqs. (21) can now be computed. Indeed, by integrating
over {ty, tg +4] one obtains

T—1,

[K1s (0 (0) = (K} (=40 61} + 5 N O} (242)

1
(L1+(0 @) = L) (% MO0y + 5 A1) (24b)
The thermal -force can be dealt with asin (20d); however, if the heating capacity of the sources is

given then the vector can easily be integrated with respect to t.

Then from (21) and using (24), and in view of the last remark one finally obtains the equations for the
temperature field of a system of two bodies at the instant t; , -

?

/ A
( [Cl] "‘ ézi [K1] ) {91 (th+1)} - _A2i [le] {e-z Uk-l)}: ( [C1| - "AE;‘ [Kl] ) {61 (Ih)} - 7”412] {Oe ((l:)} T {Ql} At, (253.)

(160+ 5 1K )@t = Z1L 0,00 = (161 — S 1) 0,60} = Ll By @50)
NOTATION
6(x,t) is the temperature;
68,i is the partial derivative with respect to spatial coordinate xj (1 =1, 2, 3);
6,ii is the Laplacian;
o is the partial derivative with respect to time;
c is the heat capacity;
v is the density;
A is the heat-conduction coefficient;
w(x,t) is the specific power (per unit mass) of internal heat sources due to plastic deformation;
nj is the direction of the unit outer normal to the boundary;
a is the heat-transfer coefficient,
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